The Road to Deterministic Matrices with the Restricted Isometry Property
نویسندگان
چکیده
The restricted isometry property (RIP) is a well-known matrix condition that provides state-of-the-art reconstruction guarantees for compressed sensing. While random matrices are known to satisfy this property with high probability, deterministic constructions have found less success. In this paper, we consider various techniques for demonstrating RIP deterministically, some popular and some novel, and we evaluate their performance. In evaluating some techniques, we apply random matrix theory and inadvertently find a simple alternative proof that certain random matrices are RIP. Later, we propose a particular class of matrices as candidates for being RIP, namely, equiangular tight frames (ETFs). Using the known correspondence between real ETFs and strongly regular graphs, we investigate certain combinatorial implications of a real ETF being RIP. Specifically, we give probabilistic intuition for a new bound on the clique number of Paley graphs of prime order, and we conjecture that the corresponding ETFs are RIP in a manner similar to random matrices.
منابع مشابه
A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property
In this note, we prove that matrices whose entries are all 0 or 1 cannot achieve good performance with respect to the Restricted Isometry Property (RIP). Most currently known deterministic constructions of matrices satisfying the RIP fall into this category, and hence these constructions suffer inherent limitations. In particular, we show that DeVore’s construction of matrices satisfying the RI...
متن کاملSparse Signal Processing with Frame Theory
Many emerging applications involve sparse signals, and their processing is a subject of active research. We desire a large class of sensing matrices which allow the user to discern important properties of the measured sparse signal. Of particular interest are matrices with the restricted isometry property (RIP). RIP matrices are known to enable efficient and stable reconstruction of sufficientl...
متن کاملAnalysis of the Statistical Restricted Isometry Property for Deterministic Sensing Matrices Using Stein’s Method
Statistical restricted isometry property (STRIP) was recently formulated by Calderbank et al. to analyze the performance of deterministic sampling matrices for compressed sensing. In this paper, we study the STRIP by taking advantage of concentration inequalities using Stein’s method. In particular, we derive the STRIP performance bound in terms of the mutual coherence of the sampling matrix an...
متن کاملNew Construction of Deterministic Compressed Sensing Matrices via Singular Linear Spaces over Finite Fields
As an emerging approach of signal processing, not only has compressed sensing (CS) successfully compressed and sampled signals with few measurements, but also has owned the capabilities of ensuring the exact recovery of signals. However, the above-mentioned properties are based on the (compressed) sensing matrices. Hence the construction of sensing matrices is the key problem. Compared with the...
متن کاملA Class of Deterministic Sensing Matrices and Their Application in Harmonic Detection
Abstract In this paper, a class of deterministic sensing matrices are constructed by selecting rows from Fourier matrices. These matrices have better performance in sparse recovery than random partial Fourier matrices. The coherence and restricted isometry property of these matrices are given to evaluate their capacity as compressive sensing matrices. In general, compressed sensing requires ran...
متن کامل